Ротарь О. В., Искрижицкий А. А.

ЭКОЛОГИЧЕСКАЯ ОПАСНОСТЬ ОТХОДОВ ПРОИЗВОДСТВА ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ

Адрес статьи: www.gramota.net/materials/1/2009/11-1/52.html

Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по рассматриваемому вопросу.

Источник

Альманах современной науки и образования

Тамбов: Грамота, 2009. № 11 (30): в 2-х ч. Ч. І. С. 165-167. ISSN 1993-5552.

Адрес журнала: www.gramota.net/editions/1.html

Содержание данного номера журнала: www.gramota.net/materials/1/2009/11-1/

© Издательство "Грамота"

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: www.gramota.net Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: almanac@gramota.net

- 5. ГОСТ 15140-78*. Материалы лакокрасочные. Метод определения адгезии.
- 6. Дринберг А. Я. Технология плёнкообразующих веществ. Л.: Госхимиздат, 1955. 367 с.
- 7. Зильберман Р. М. Показатели прочности пульвербакелита // Абразивы. 1972. № 12. С. 7-8.
- **8. Зильберман Р. М.** Способ снижения твёрдости и прочности связки под действием стандартных содовых растворов СОЖ // Абразивы и алмазы. 1964. Вып. 5. С. 10-14.
 - 9. Кноп А., Шейб В. Фенольные смолы и материалы на их основе / пер. с англ. М.: Химия, 1983. 271 с.
 - 10. Маслов Е. Н. Теория шлифовальных материалов. М.: Машиностроение, 1974. 320 с.
 - 11. Николаев А. Ф. Синтетические полимеры и пластические массы на их основе. М.: Химия, 1966. С. 407-408.
- **12. Николаев А. Ф., Тризно М. С.** Взаимодействие эпоксидных смол с новолаками при повышенных температурах // Пластические массы. 1967. № 6. С. 28-30.
 - 13. Пакен А. М. Эпоксидные соединения и эпоксидные смолы / пер. с нем. Л.: ГНТИХЛ, 1962. С. 507-520.
- **14.** Синтетические смолы и пластические массы. Сырьё для пластмасс // Каталог-справочник продукции Нижнетагильского завода пластмасс. Черкассы, 1973. 30 с.
 - **15. Тагер А. А.** Физико-химия полимеров. М.: Химия, 1978. С. 54-78.
- **16. Фальковский М.** Руководство по способу пропитки керамических кругов спиртовыми растворами бакелита. М.: ЦНИИЛМАШ, 1938. 47 с.

ЭКОЛОГИЧЕСКАЯ ОПАСНОСТЬ ОТХОДОВ ПРОИЗВОДСТВА ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ

Ротарь О. В., Искрижицкий А. А. ГОУ ВПО «Томский политехнический университет» OAO «ТомскНИПИнефть»

Понятие «отходы» кратко и емко дано в словаре Ожегова С. И. как «остатки производства, годные для какой-нибудь иной цели». В США отходами считают «ненужные материалы», образующиеся в результате деятельности предприятий и людей. Действительно, границы между понятиями «сырьё - отходы - вторичные ресурсы» условны, и они раздвигаются в зависимости от технико-экономических задач производства, экономической целесообразности и технологической возможности комплексной переработки и использования исходного природного сырья.

В производстве древесно-стружечных плит накапливается огромное количество отходов. Экологическое влияние отходов зависит от их качественного и количественного состава. Промышленные отходы представляют собой неоднородные по химическому составу, сложные многокомпонентные смеси веществ, обладающих разнообразными физико-химическими свойствами (древесная пыль, опилки, обрезки плит). Основными материалами, применяемыми для приготовления связующих веществ, являются мочевина техническая и формалин.

Отходы складируются на обвалованных площадках. Они не только уродуют ландшафт, но и загрязняют окружающую среду выделяющимися свободным формальдегидом и продуктами неполного окисления древесины. Экологическая опасность отходов усиливается свойствами, которые способствуют их миграции в объекты окружающей среды: растворимостью, нестабильностью, летучестью и склонностью к пылеобразованию.

Формальдегид относится ко второму классу опасности. Это газ с резким запахом, легко растворимый в воде, тяжелее воздуха и является сильным восстановителем. Формальдегид способен вызывать аллергические реакции, имеются также основания предполагать его канцерогенность [1]. Вследствие угрозы, которую представляет формальдегид, следует стремиться к поддержанию загрязнений им всех природных сред на возможно низком уровне. Подпороговая концентрация, не влияющая на санитарный режим водоёмов и сапрофитную микрофлору, составляет 5 мг в литре. При содержании формальдегида 0,24 мг в литре ткани рыб приобретают неприятный запах. Формальдегид оказывает токсическое действие, вызывает поражение ЦНС, легких, печени, почек, органов зрения, возможно также кожно-резорбтивное действие.

Целью данного исследования являлось определение концентрации формальдегида в атмосфере воздуха и сточных водах на территории завода ДСП и прилегающих к нему земельных участках.

Предварительно был сделан обзор методов определения формальдегида.

Для определения альдегидов наиболее часто применяют фуксинсернистую кислоту, известную под названием реактива Шиффа. Чувствительность реакции определения альдегидов с фуксинсернистой кислотой сильно повышается в присутствии кетонов. При содержании в исследуемом растворе 8% ацетона достигается максимальное повышение чувствительности. Однако в присутствии ацетона максимальное развитие окраски наблюдается через 3,5 ч., а в отсутствии ацетона - через 2 часа.

В качестве специфического реактива для колориметрического определения формальдегида применяется хромотроповая кислота, но целый ряд алифатических альдегидов, а также ароматические альдегиды и фурфурол мешают этой реакции, давая желтую окраску. Фенол, часто сопутствующий формальдегиду в воздухе, мешает определению последнего по реакции с хромотроповой кислотой.

Установлено, что не только хромотроповая, но и другие оксипроизводные нафталина - И-кислота (6-амино-1-нафтол-3-сульфокислота) и фенил-И-кислота (6-анилин-1-нафтол-3-сульфокислота) дают цветные реакции с альдегидами. При этом фенил-И-кислота и особенно И-кислота являются более чувствительными реактивами на формальдегид, чем хромотроповая кислота.

Реакции для фотометрического определения малых концентраций альдегидов в различных объектах приведены в Таблице 1.

Табл. 1. Реакции для фотометрического определения альдегидов

Реактив	Продукт реакции	Соединения, мешающие определению
Фуксинсернистая кислота	Продукты конденсации	Аминокислоты
Хромотроповая кислота, концентрированная серная кислота	Продукты конденсации и окисления	Кетоны
Фенилгидразин, PeCl3 или K3[Fe(CN)6]	Формазоны	Фенолы
2,4- динитрофенил - гидразин	2,4 - динитрофенилгидразины	Кетоны, хиноны
Триптофан, окислитель	Продукты конденсации и окисления	
Демитилдигидрорезорцин (димедон)	Продукт конденсации	
Бензолсульфогидроксамовая кислота, Fe (III)	Fe(III) соль гидроксамовой кислоты	
4-аминоантипирин, фенол, окислитель	Индофенолы	Первичные ароматические амины
Фенолы, концентрированная серная кислота	Продукты конденсации и окисления	

Для определения формальдегида в воздухе был выбран метод, основанный на образовании окрашенного соединения при взаимодействии формальдегида с хромотроповой кислотой в среде 70% раствора серной кислоты и последующем фотометрическом определении. Воздух забирался специальным устройством и пропускался через склянку Дрекселя, при этом формальдегид переходил в водную фазу. Пробы отбирались над площадками в пяти точках по методу конверта. Результаты измерений сведены в Табл. 2.

Табл. 2. Содержание формальдегида в атмосфере воздуха (мг/литр)

Время отбора проб	Площадка 2008 года	Площадка 2007 года
май	41,3 - 40,0	17,5 - 15,3
июнь	37,8 - 36,5	17,0 - 15,1
июль	36,4 - 35,3	16,8 - 14,7
август	37,5 - 35,1	14,5 - 13,7
сентябрь	28,9 - 21,1	10,7 - 10,0
октябрь	26.3 - 20,5	9,8 - 9,0

Вначале формирования отвалов наблюдается максимальное выделение свободного формальдегида. Увеличение содержания формальдегида в воздухе над площадкой в июле, августе объясняется выделением «связанного» формальдегида.

Площадки отвалов удалены от производственных и административных корпусов, но соседствуют с частным сектором и дачными участками горожан. Количество формальдегида в атмосфере воздуха над прилегающими к заводу производства ДСП территориями колеблется в среднем от 8 до 20% (запах ощущается при концентрации 20 мг/л).

Содержание формальдегида в воздухе над площадкой 2007 года почти стабильно. Это свидетельствует об умеренной эмиссии его при анаэробном разложении целлюлозы и высвобождением и деструкции смолы.

Для определения количества формальдегида в почве был выбран метод оксимирования, который основан на способности альдегидов реагировать с солянокислым гидроксиламином с образованием оксимов. При этом выделяется эквимолекулярное альдегиду количество кислоты, которую оттитровывают 0,5 н. раствором щелочи (индикатор бромфеноловый синий 1% раствор). Для анализа берут две пробы - рабочую и контрольную. При титровании окраску анализируемых проб доводят до окраски контрольной пробы, содержание формальдегида X(%) рассчитывают по формуле:

$$X = \frac{(V_1 - V_2) \cdot F \cdot K}{g} \cdot 100,$$

где $V_{\scriptscriptstyle 1}$ - объем 0,5 н. раствора NaOH, затраченного на титрование рабочей пробы, мл;

- V_2 объем 0,5 н. раствора NaOH, затраченного на титрование контрольной пробы, мл;
- F поправочный коэффициент 0,5 н. раствора NaOH;
- K количество альдегида, соответствующее 1 мл точно 0,5 н. раствора NaOH, г;
- д навеска альдегида, г.

Пробы почвы отбирались в четырех точках, ограничивающих площадку отвалов. Почву промывали водой, переводя фенол в водную фазу. В Таблице 3 сведены данные анализов.

Табл. 3. Содержание формальдегида в почве (мг/кг)

Время отбора проб	Площадка 2008 года	Площадка 2007 года
май	14,2	12,1
июнь	13,9	10,1
июль	13,5	10,9
август	13,7	10,0
сентябрь	12,5	8,7
октябрь	12,8	8,5

При сравнении полученных результатов анализа видно, что количество формальдегида в почве на территории отвалов значительно превышает ПДК (7мг/кг). В почве прилегающих территорий количество формальдегида в 1,5-2 раза выше, что объясняется расположением отвалов выше частного сектора (происходит вымывание формальдегида осадками и талыми водами).

Фотометрический метод согласно ГОСТ 27384 «Нормы погрешности измерений, показатели состава и свойств» при доверительной вероятности P=0,95, относительная погрешность не должна превышать 5% в диапазоне измеренных значений свыше 10 мг/л.

На основании полученных данных можно убедиться в том, что отвалы как источники загрязнения формальдегидом, экологически опасны.

Список использованной литературы

- **1. Федорова А. И., Никольская А. Н.** Практикум по экологии и охране окружающей среды. М.: ВЛАДОС, 2001. 284 с.
- **2. Вредные вещества в промышленности**: справочник для химиков-инженеров и врачей / под ред. Н. В. Лазарева. Л.: Химия, 1976. Т. 2. 624 с.
 - **3. Уокер Дж. Ф.** Формальдегид. М.: Росхимиздат, 1987. 550 с.
 - 4. Гринин А. С., Новиков В. Н. Промышленные и бытовые отходы. М.: ГРАНД, 2002. 332 с.
 - 5. Афанасьев Д. Н. Где найти информацию о составе отходов // Экология производства. 2006. № 12. С. 54-57.
- **6. Экологический мониторинг: состояние окружающей среды Томской области** / под ред. А. М. Адам. Томск: Графика, 2008. 147 с.
- **7. Ротарь О. В., Максименко Г. В.** Основы микробиологии и биотехнологии: учеб. пособие. Томск: Изд-во ТПУ, 2003. Ч. І. 115 с.; 2004. Ч. ІІ. 150 с.

ПЕРЕНОС ЭЛЕКТРОННОЙ ЭНЕРГИИ ВОЗБУЖДЕНИЯ В РЯДУ ПРОИЗВОДНЫХ КАРБАЗОЛА

Ротарь О. В., Ляпков А. А. Рогачева С. С.

ГОУ ВПО «Томский политехнический университет» Юргинский технологический институт

Как известно [1] передачу энергии возбуждения можно классифицировать по следующим признакам: передача заряда и передача возбуждения. Исследования по переносу заряда в поливинилкарбазоле (ПВК) в олигомерах 9-винилкарбазола (ПВК-О), 3-ацетил-9-винилкарбазола (3-Ац-ПВК), в ряду производных карбазола отражены в [2, 3]. В данной работе изучался перенос энергии возбуждения в указанных системах методами электронной спектроскопии и люминесцентного анализа.

Для исследований использовали 9-ПВК-О и 3-Ац-ПВК с молекулярной массой 2000, полученные путем взаимодействия карбазола и 3-ацетилкарбазола с винилацетатом [4], высокомолекулярный ПВК, синтезированной полимеризацией 9-винилкарбазола в присутствии перекиси бензоила с молекулярной массой 36000, а также карбазол, 9-этилкарбазол (9-ЭК), 3-ацетил-9-этилкарбазол (3-Ац-9-ЭК) - все эти соединения являются донорами электронов. В качестве акцепторов электронов брали нитросоединения бензольного ряда - нитробензол (НБ) м-динитробензол (м-ДНБ), пикриновая кислота (ПК) и нитропроизводные карбазола - 3-