Ройтенберг В. Ш.

О БИФУРКАЦИЯХ ВЕКТОРНЫХ ПОЛЕЙ, ИМЕЮЩИХ ЯЧЕЙКИ, СОСТОЯЩИЕ ИЗ ТРАЕКТОРИЙ, ПРЕДЕЛЬНЫХ К ДВОЙНЫМ ЦИКЛАМ

Адрес статьи: www.gramota.net/materials/1/2008/7/58.html
Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по рассматриваемому вопросу.

Источник

Альманах современной науки и образования

Тамбов: Грамота, 2008. № 7 (14). С. 169-172. ISSN 1993-5552.

Адрес журнала: www.gramota.net/editions/1.html
Содержание данного номера журнала: www.gramota.net/materials/1/2008/7/

© Издательство "Грамота"
Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: www.gramota.net Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: almanac@gramota.net

(на примере УралГАХА). - Интернет-издание на 8 стр.: http://archvuz.ru/magazine/Numbers/2007 2.

- 5. Витгенштейн Л. Избранные работы. Москва: Территория будущего, 2005.
- **6.** Гладкова И. С., Рожкова А. В., Михеев В. И. Использование метода усреднения по династиям в пентавурфовом анализе пропорций древнеегипетских пирамид // Международная научная конференция «Образование, наука и экономика в вузах. Интеграция в международное образовательное пространство» (г. Плоцк, Польша, 22-27 августа 2006 года). Плоцк, 2006. С. 245-247.
- **7. Игнатьев Ю. А., Михеев В. И., Разин А.** Д. Методические указания по курсу «Высшая математика». Москва: Издательство РУДН, 2007.
 - 8. Кильпе Т. Л. Основы архитектуры. Москва: Высшая школа, 2005. 4-е изд.
- **9. Комарова И. В., Рожкова А. В., Розанова С. А.** Вурфовый и пентавурфовый анализ пропорций пирамид Майя // Международная научная конференция «Образование, наука и экономика в вузах. Интеграция в международное образовательное пространство» (г. Плоцк, Польша, 22-27 августа 2006 года). Плоцк, 2006. С. 241-244.
 - 10. Михайловский И. Б. Архитектурные формы античности. Москва: Архитектура-С, 2006.
- **11. Михеев В. И., Игнатьев Ю. А.** Эрлангенский конструктивизм и определение вурфа // Философия математики: актуальные проблемы: Материалы Международной научной конференции 15-16 июня 2007 года. Москва: Издатель Савин С. А., 2007. С. 217-218.
- 12. Рожкова А. В., Игнатьев Ю. А., Разин А. Д. Образовательный идеал и этика архитектора // Тезисы докладов 3-й Международной конференции «Функциональные пространства. Дифференциальные операторы. Общая топология. Проблемы математического образования», посвященной 85-летию Л. Д. Кудрявцева. Москва: МФТИ, 2008. С. 639-640.
 - 13. Розенберг А. В. Философия архитектуры. Петербург, 1923.
 - 14. Architecture, Art, Philosophy / Edited by Andrew Benjamin. New-York: Academy Ed., 1995.
- 15. Cacciari M. Architecture and Nihilism: on the Philosophy of Modern Architecture. New Haven: Yale University Press, 1993.
 - 16. Dingler H. Aufbau der exakten Fundamentalwissenschaft. München: Eidos-Verlag, 1964.
 - 17. Dingler H. Aufsätze zur Methodik. Hamburg: Felix Meiner, 1987.
- **18.** Gutmann M. Die Evolutionstheorie und ihr Gegenstand. Beitrag der Methodischen Philosophie zu einer konstruktiven Theorie der Evolution. Berlin: Verlag für Wissenschaft und Bildung, 1996.
 - 19. Hartmann D., Janich P. Methodischer Kulturalismus. Frankfurt am Main: Suhrkamp, 1996.
- 20. Hartmann D. Konstruktive Fragelogik: Vom Elementarsatz zur Logik von Frage und Antwort. Mannheim: BI-Wissenschaftsverlag, 1990.
 - 21. Inhetveen R. Konstruktive Geometrie. Mannheim: BI-Verlag, 1983.
- **22.** Janich P. Die Protophysik der Zeit: Konstruktive Begründung und Geschichte der Zeitmessung. Frankfurt am Main: Suhrkamp, 1980.
 - 23. Janich P., Psarros N. Die Sprache der Chemie. Würzburg: Königshausen & Naumann, 1996.
- **24.** Janich P., Weingarten M. Wissenschaftstheorie der Biologie: Methodische Wissenschaftstheorie und die Begründung der Wissenschaften. München: Wilhelm Fink Verlag, 1999.
- **25.** Kamlah W., Lorenzen P. Logische Propädeutik: Vorschule des vernünftigen Redens. Mannheim: BI-Wissenschaftsverlag, 1967.
- **26. Lorenzen P.** Differential and Integral: A Constructive Introduction to Classical Analysis. Austin: University of Texas Press, 1971.
 - 27. Lorenzen P. Lehrbuch der konstruktiven Wissenschaftstheorie. Stuttgart: Metzler, 2000.
 - 28. Lorenzen P., Lorenz K. Dialogische Logik. Darmstadt: Wissenschftliche Buchgesellschaft, 1978.
- 29. Schaper G. Vom Wesen des Bauens und der Baukunst: Bemerkungen zu einer Philosophie der Architektur. Wuerzburg, 1962
 - 30. Tetens H. Rationale Dynamik // Philosophia Naturalis. Bd. 22. 1985.

О БИФУРКАЦИЯХ ВЕКТОРНЫХ ПОЛЕЙ, ИМЕЮЩИХ ЯЧЕЙКИ, СОСТОЯЩИЕ ИЗ ТРАЕКТОРИЙ, ПРЕДЕЛЬНЫХ К ДВОЙНЫМ ЦИКЛАМ

Ройтенберг В. Ш.

Ярославский государственный технический университет

- **1**. **Постановка задачи**. Пусть X^r банахово пространство C^r векторных полей с C^r нормой, заданных на двумерной сфере S^2 ($r \ge 9$). Рассмотрим векторные поля $X_0 \in X^r$, удовлетворяющие следующим условиям.
- (C) Все его особые точки и замкнутые траектории гиперболические, за исключением двойных циклов Γ_1 и Γ_2 . Существует траектория, α -предельная к Γ_1 и ω -предельная к Γ_2 . Отсутствуют седловые связки. Существуют выходящие сепаратрисы L_{0i}^- ($i \in \{1,2,...,m\}$) седел, ω -предельные к Γ_1 , и входящие сепаратрисы L_{0j}^+ ($i \in \{1,2,...,m\}$) седел, имеющих сепаратрису α -предельную к Γ_1 и сепаратрису ω -предельную к Γ_2 , седловые величины отличны от нуля.

Векторные поля, удовлетворяющие условиям (C), образуют в X^r C^{r-1} – подмногообразие C коразмерности два. Обозначим C_1 - подмножество в C, состоящее из векторных полей, для которых любая траектория α – предельная к Γ_1 является и ω – предельной к Γ_2 . Пусть $C_2 = C \setminus C_1$.

Бифуркации векторных полей $X_0 \in C$ в случае, когда или m=1, или n=1 описаны в [Ройтенберг 1992,

Ройтенберг 1995]. Бифуркации векторных полей $X_0 \in C_1$, в случае $m \ge 2$, $n \ge 2$ рассматривались в [Ройтенберг 2008]. Здесь мы изучим бифуркации векторных полей $X_0 \in C_2$ при $m \ge 2$, $n \ge 2$ (Рис. 1).

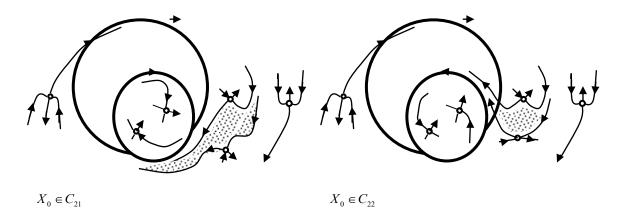


Рис. 1. Траектории векторного поля $X_0 \in C_2$ в случае, когда m=2, n=2 и имеется единственная ячейка из траекторий, α – предельных к Γ_1 и ω – предельных к Γ_2

2. Канонические координаты в окрестности двойного цикла. Инварианты векторного поля $X_0 \in C_2$. Обозначим $\mathbf{S}^1 = \mathbf{R}/\mathbf{Z}$ стандартную окружность. Пусть (a,b) - открытая ориентированная дуга \mathbf{S}^1 с началом в точке a и концом в точке b. Для класса (точки) $s \in \mathbf{S}^1$ обозначим $\rho(s)$ единственный его представитель, принадлежащий промежутку [0,1).

Двойные циклы Γ_1 и Γ_2 ограничивают область K, гомеоморфную кольцу.

Из [Neuhaus 1983, Бородин 2001] следует, что существует такой диффеоморфизм h_k кольца $(-\sigma,\sigma) \times \mathbf{S}^1$ на окрестность U_k двойного цикла $\Gamma_k (k=1,2)$, что $h_k (\{0\} \times \mathbf{S}^1) = \Gamma_k$, множества $h_1 ((0,\sigma) \times \mathbf{S}^1)$ и $h_2 ((-\sigma,0) \times \mathbf{S}^1)$ не имеют общих точек и содержатся в K, а векторное поле $X_0 |_{U_k}$ имеет в канонических координатах (x,s), задаваемых h_k в U_k , те же траектории (и с той же ориентацией), что и векторное поле $X_k^*(x,s) = P_{0k}(x)\partial/\partial x + 1 \cdot \partial/\partial s$, где $P_{0k} \in C^{r-4}$, $P_{0k}(x) = x^2 + o(x^2)$, $P_{0k}(x) > 0$ при $x \neq 0$. Канонические координаты определены не однозначно, но разность s-координат точек уже однозначна.

Обозначим $\Gamma_k^{\pm} \coloneqq h_k(\{\pm d\} \times \mathbf{S}^1)$ при некотором $d \in (0,\sigma)$. Сепаратриса L_{0i} , $i \in \{1,2,...,m\}$, $(L_{0j}^1,i \in \{1,2,...,n\})$ пересекает трансверсаль Γ_1^- (Γ_2^+) в единственной точке. Γ_2 . Пусть это точка $h_1(-d,u_i^0)$ ($h_2(d,v_j^0)$). Будем считать, что сепаратрисы пронумерованы так, что точки u_i^0 (v_j^0) расположены на \mathbf{S}^1 в циклическом порядке. Обозначим $\widetilde{L}_{0,i}^+$ ($i \in \{1,2,...,r_+\}$) сепаратрисы седел, α — предельные к Γ_1 , а $\widetilde{L}_{0,i}^-$ ($i \in \{1,2,...,r_-\}$) сепаратрисы седел, α — предельные к Γ_2 . Пусть они пересекают трансверсаль Γ_1^+ (Γ_2^-) в точках $h_1(d,\widetilde{u_i}^0)$ ($h_2(-d,\widetilde{v_i}^0)$), где точки \widetilde{u}_i^0 (\widetilde{v}_j^0) расположены на \mathbf{S}^1 в циклическом порядке. Траектории векторного поля $K_0 \in C_2$, являющиеся и K_1^- предельными к K_2^- входят в ячейки K_2^- (K_2^- (K_2^-), с границей K_2^- (K_2^-), о границей K_2^- (K_2^-

Величины $u^0_{ik} := u^0_k - u^0_i$, $\widetilde{u}^0_{ik} := \widetilde{u}^0_k - \widetilde{u}^0_i$, $v^0_{jl} := v^0_l - v^0_j$ и $\widetilde{v}^0_{jl} := \widetilde{v}^0_l - \widetilde{v}^0_j$ являются инвариантами векторного поля $X_0 \in C_2$.

Обозначим $I_s := (\widetilde{u}_{i_{2s-1}}^0, \widetilde{u}_{i_{2s}}^0)$. Так как каждая траектория из K_s пересекает обе трансверсали Γ_1^+ и Γ_2^- , то определены диффеоморфизмы $f_s : I_s \to J_s \subset \mathbf{S}^1$, такие, что траектория поля X_0 , выходящая из точки

 $h_1(d,u),\ u\in I_s$, пересекает Γ_2^- в точке $h_2(-d,f_s(u))$. В силу односвязности S^2 диффеоморфизмы f_s , $s\in\{1,2,...,\widetilde{I}\}$, либо все сохраняют ориентацию, и тогда $J_s:=(\widetilde{v}_{j_2s^{-1}}^0,\widetilde{v}_{j_2s}^0)$, либо все меняют ориентацию, и тогда $J_s:=(\widetilde{v}_{j_2s^{-1}}^0,\widetilde{v}_{j_2s^{-1}}^0)$. Доопределим их по непрерывности до гомеоморфизмов $f_s:\overline{I}_s\to J_s$ Введем отображения f_{ijkl}^s , заданные формулами $f_{ijkl}^s(u)=f_s(u+u_{ik}^0)-f_s(u)-v_{jl}^0$. Они определены на множестве $\{u\in\overline{I}_s:u+u_{ik}^0\in\overline{I}_s\}$, возможно пустом, и являются инвариантами векторного поля X_0 . Зададим в C_2 подмножества C_{21} и C_{22} условиями:

- 1) $X_0 \in C_{21}$ ($X_0 \in C_{22}$), если f_s сохраняют (меняют) ориентацию,
- 2) $u_{ij}^{0} \neq \widetilde{u}_{pq}^{0}$, $v_{ij}^{0} \neq \widetilde{v}_{pq}^{0}$ npu всех допустимых $i \neq j$, $p \neq q$
- 3) корни уравнения $f_{ijkl}^s(u)=0$ ($i\neq k,j\neq l$) принадлежат I_s и являются простыми. Нетрудно убедиться, что $C_{21}\cup C_{22}$ открытое всюду плотное подмножество C_2 .

Обозначим $M_{k\alpha}^1$, $M_{l\beta}^2$ и M_{kl}^3 ($k \in \{1,2,...,m\}$, $l \in \{1,2,...,n\}$, $\alpha \in \{1,2,...,r_+\}$, $\beta \in \{1,2,...,r_-\}$) - множества точек (u,v) на торе $\mathbf{T}^2 := \mathbf{S}^1 \times \mathbf{S}^1$, удовлетворяющих, соответственно, уравнениям $u = \widetilde{u}_s^0 - u_{lk}^0$, $v = \widetilde{v}_s^0 - v_{ll}^0$ и $v = f_s(u + u_{lk}^0) - v_{ll}^0$ при каком-нибудь $s \in \{1,2,...,\widetilde{l}\}$. В силу условия 2) при $(i,s) \neq (k,l)$ $\widetilde{u}_{ls}^0 - u_{ll}^0 \neq \widetilde{u}_{ll}^0 - u_{lk}^0$ и окружности M_{ls}^1 и M_{kl}^1 не пересекаются. Точно так же M_{ls}^2 и M_{kl}^2 не пересекаются при $(i,s) \neq (k,l)$. Поэтому можно говорить о циклическом порядке окружностей M_{ls}^1 (соответственно, M_{ls}^2) на \mathbf{T}^2 . Он определяется линейным порядком чисел $P(\widetilde{u}_{ls}^0 - u_{ll}^0)$ (соответственно, $P(\widetilde{v}_{ls}^0 - v_{lj}^0)$). В силу условия 3) кривые M_{kl}^3 трансверсальны друг другу. Кроме того, они, очевидно, трансверсальны M_{ls}^1 и M_{ls}^2 . Пусть $\pi: \mathbf{R}^2 \to \mathbf{T}^2$ - стандартная проекция. Обозначим $\overline{M}_{ll}^k := \pi^{-1}(M_{ll}^k)$ для всех допустимых значений i,j,k .

3. Бифуркации векторных полей из C_2 . Рассмотрим двухпараметрическую деформацию $\{X_{\varepsilon}\}$ векторного поля $X_0 \in C_2$ - C^r - отображение $E \ni \varepsilon \mapsto X_\varepsilon \in X^r$ достаточно малой окрестности нуля в \mathbf{R}^2 в пространство векторных полей, трансверсальное C_2 в точке X_0 . Уменьшив при необходимости окрестность E, мы можем выбрать в ней такие C^r – координаты $(\varepsilon_1, \varepsilon_2)$, чтобы у поля X_{ε} , $\varepsilon = (\varepsilon_1, \varepsilon_2)$, существовали выходящие (входящие) сепаратрисы $L_i^-(\mathcal{E})$, $i\in\{1,2,...,m\}$, $L_j^+(\mathcal{E})$, $j\in\{1,2,...,n\}$, $\widetilde{L}_\alpha^+(\mathcal{E})$, $\alpha\in\{1,2,...,r_+\}$ $\beta \in \{1,2,...,r_{-}\}$, седел, непрерывно зависящие от ε , и совпадающие при $\varepsilon = 0$, соответственно, с L_{0i}^{-} , L_{0j}^{+} , $L_{0,\alpha}^{+}$ и $\tilde{L}_{0,\beta}^-$. Кроме того, мы можем считать, что при $\varepsilon_1 = 0$ ($\varepsilon_2 = 0$) в окрестности U_1 (U_2) имеется единственная замкнутая траектория - двойной цикл, а при $\varepsilon_1 > 0$ ($\varepsilon_2 > 0$) в этой окрестности нет замкнутых траекторий. Бифуркационное множество семейства векторных полей $\{X_{\varepsilon}\}$, $\varepsilon \in (-\delta, \delta)^2$, является объединением мно- $\text{жеств} \quad \{0\} \times (-\delta, \delta), \quad (-\delta, \delta) \times \{0\} \quad \text{$_{\text{II}}$ MHOWECTB} \quad {}^{1}B_{i\alpha}, \quad {}^{2}B_{j\beta} \quad \text{$_{\text{II}}$} \quad {}^{3}B_{ij}, \quad i \in \{1, 2, ..., m\}, \quad j \in \{1, 2, ..., n\}, \quad \alpha \in \{1, 2, ..., r_{+}\}, \quad \alpha \in \{1, 2, ..., r_{+}\}$ $\beta \in \{1,2,...,r_{-}\}$, при значениях параметров $\varepsilon = (\varepsilon_{1},\varepsilon_{2})$ из которых, соответственно, $L_{i}^{-}(\varepsilon) = \widetilde{L}_{a}^{+}(\varepsilon)$, $L_{j}^{+}(\varepsilon)=\widetilde{L}_{eta}^{-}(\varepsilon)$ и $L_{i}^{-}(\varepsilon)=L_{j}^{+}(\varepsilon)$. Согласно [Ройтенберг 1995: 3] при достаточно малом $\delta>0$ имеем следующие утверждения. Множества ${}^{1}B_{is}$ и ${}^{2}B_{js}$ является объединением, соответственно, множеств ${}^{1}B_{is}^{p} = \{\varepsilon : \varepsilon_{1} = {}^{1}b_{is}^{p}(\varepsilon_{2})\}$ ${}^{2}B_{js}^{p} = \{\varepsilon : \varepsilon_{2} = {}^{2}b_{is}^{p}(\varepsilon_{1})\}, \quad p \in \mathbb{N}, \quad \text{где} \quad {}^{1}b_{is}^{p} : (-\delta, \delta) \to (0, \infty), \quad {}^{2}b_{js}^{p} : (-\delta, \delta) \to (0, \infty), \quad {}^{1}b_{is}^{p} : {}^{2}b_{js}^{p} \in C^{1}, \quad \forall t \in (-\delta, \delta)$ $\lim_{p\to\infty} {}^1b_{is}^{\,p}(t) = \lim_{p\to\infty} {}^2b_{js}^{\,p}(t) = 0, \quad \lim_{p\to\infty} ({}^1b_{is}^{\,p}(t))' = \lim_{p\to\infty} ({}^2b_{js}^{\,p}(t))' = 0, \quad {}^1b_{is}^{\,p+1}(t) < {}^1b_{is}^{\,p}(t), \quad {}^2b_{is}^{\,p+1}(t) < {}^2b_{is}^{\,p}(t). \quad \text{При выполнении}$ условия 2) из [Ройтенберг 1995: 4] кроме того следует, что ${}^1b^p_{\alpha\beta}(t) < {}^1b^p_{is}(t)$, если $\rho(\widetilde{u}^0_{1\beta} - u^0_{1s}) > \rho(\widetilde{u}^0_{1\alpha} - u^0_{1i})$ $e^{2b_{\alpha\beta}^{p}(t)} < e^{2b_{js}^{p}(t)}$, если $e^{2b_{js}^{0}(t)}$, если $e^{2b_{js}^{0}(t)} > e^{2b_{js}^{0}(t)}$. Множество $e^{3B_{jj}}$ состоит из не пересекающихся между собой множеств ${}^{3}B_{sij}^{pq}$, $s \in \{1,2,...,\widetilde{l}\}$, $p,q \in \mathbb{N}$, замыкания которых при достаточно больших p и q являются C^{1} – дугами с концами в точках пересечения $^{^{1}}B^{^{p}}_{ii_{s}}$ с $^{^{2}}B^{q}_{jj_{s}}$ и $^{1}B^{p}_{ii_{s+1}}$ с $^{^{2}}B^{q}_{jj_{s+1}}$.

В настоящей работе для $X_0 \in C_{21} \cup C_{22}$, мы опишем взаимное расположение множеств ${}^3B_{ij}$ друг с другом и с множествами ${}^1B_{ks}$ и ${}^2B_{ks}$.

Теорема. При достаточно малом δ существует C^1 – диффеоморфизм $\varphi:(0,\delta)^2 \to U \subset \mathbf{R}^2$ такой, что для всех $i \in \{1,2,...,m\}$, $i \in \{1,2,...,n\}$, $k \in \{1,2,3\}$ $\varphi(^kB_{ij} \cap (0,\delta)^2) = \overline{M}_{ij}^k \cap U$.

Доказательство теоремы проводится теми же методами, что и в работе [Ройтенберг 2008], где рассмотрены бифуркации векторных полей из открытого всюду плотного множества $C_{11} \cup C_{12}$ в C_{1} .

Список использованной литературы

- **1. Бородин А. В.** О вложении диффеоморфизма класса C^3 в векторное поле // Математика и математическое образование. Теория и практика: Межвуз. сб. научн. тр. Ярославль: Изд-во ЯГТУ, 2001. Вып. 2. С. 14-37.
- 2. Ройтенберг В. III. О двухпараметрических бифуркациях на поверхностях // VIII конференция СНГ «Качественная теория дифференциальных уравнений». Самарканд, 1992. С. 95.
- **3. Ройтенберг В. Ш.** О некоторых глобальных бифуркациях в двухпараметрических семействах векторных полей на поверхностях // Деп. в ВИНИТИ. 1995. № 887. 95. 28 с.
- **4. Ройтенберг В. Ш**. О бифуркациях сепаратрис, предельных к двойному циклу // Деп. в ВИНИТИ. 1995. № 888 95 21 с
- **5. Ройтенберг В. III**. О бифуркациях векторных полей, имеющих ячейку, ограниченную двойными циклами // Математика и математическое образование. Теория и практика: Межвуз. сб. научн. тр. Ярославль: Изд-во ЯГТУ, 2008. Вып. 6. С. 35-45.
- **6.** Newhaus S. Bifurcations and Stability of Families of Diffeomorfisms / Newhaus S., Palis J., Takens F. // Publ. Math. IHES. 1983. V. 57. P. 5-71.

НОРМИРОВАНИЕ ВИБРАЦИИ НА СУДАХ

Романченко М. К., Романченко А. М., Барановский А. М. ФГОУ ВПО «Новосибирская государственная академия водного транспорта»

Необходимость нормирования вибрации на судах связана, во-первых, с необходимостью защиты персонала и, во-вторых, защиты корпусных конструкций, приборов и оборудования. Нормы вибрации составлены так, чтобы их можно было выполнить известными способами и средствами. Часто это бывает трудно сделать без глубокого анализа причин вибрации. В стандартах разных стран нормы вибрации различаются приблизительно в шесть раз для данной полосы частот в зависимости от страны и области применения, но это различие сохраняется во всём диапазоне частот.

Нормирование вибрации на рабочих местах и в жилых помещениях, построенных к настоящему времени морских и речных судов, проводится по логарифмическому уровню амплитуды виброперемещения, средне-квадратичного виброускорения и среднеквадратичной виброскорости. Исходные значения, соответственно, равны $u_0 = 8*10^{-12}$ м, $a_0 = 3*10^{-4}$ м/с² и $v_0 = 5*10^{-8}$ м/с. Измеряемой физической величиной является ускорение, а виброскорость и виброперемещение получаются в результате интегрирования и двойного интегрирования в электронных цепях приборов. В редких случаях измеряется непосредственно виброскорость и виброперемещение [2].

Диапазон частот вибрации делится на октавные полосы со среднегеометрическими частотами 2, 4, 8, 16, 32, 63 Γ ц [3]. Амплитуда виброскорости и виброускорения получается умножением показания прибора на $\sqrt{2}$. Ниже частоты 2 Γ ц специфические волновые эффекты в теле человека не проявляются, а выше частоты 63 Γ ц вибрация воспринимается как шум. Очевидно, деление на вибрацию и шум условно, но имеет основание в том, что шум может иметь причину, не связанную с вибрацией.

Санитарные нормы вибрации (СН 1103-73) устанавливаются в зависимости от назначения помещений, длительности воздействия, условий пребывания экипажа и пассажиров судна в соответствии с классификацией судов. Основу норм составляют предельные спектры (ПС), с первого по седьмой (Рис. 1.1). Наибольшая допустимая вибрация соответствует первому спектру (ПС1) и является нормой для автоматизированных машинно-котельных отделений судов со временем пребывания не более 60 минут в сутки. Самая малая вибрация соответствует седьмому спектру (ПС7) и является нормой для медицинских помещений судов. Седьмой спектр применяется только для судов, имеющих штатный медперсонал.

Современный стандарт [5] предусматривает для общей вибрации следующие параметры: виброускорение или виброскорость, диапазон частот и время действия вибрации. Логарифмические уровни параметров определяются в децибелах относительно ускорения $a_0 = 10^{-6} \text{ м/c}^2$, скорости $v_0 = 5*10^{-8} \text{ м/c}$. Полоса частот имеет октавное и, дополнительное, третьоктавное деление со средними частотами от 0,8 до 80 Гц. Отличие стандарта состоит в том, что «новые» уровни виброускорения больше «старых» точно на 50 дБ. Такое изменение стандарта нарушает традицию, согласно которой на частоте 1000 Гц уровни виброперемещения, виброскорости и виброускорения были равны между собой. Тем более, выбор этой частоты не случаен, поскольку чувствительность человеческого уха на указанной частоте наивысшая.

Ограничение действия вибрации проводится по медицинским признакам в следующих категориях: 1 - безопасность, 2 - граница снижения производительности труда, 3a - граница снижения производительности труда, 3в - комфорт. Нормы вибрации, корректированные по частоте (для всего нормируемого диапазона частот), приведены в Табл. 1.1.