|
License Agreement on scientific materials use.
|
CLASSIFICATION OF CONSTRUCTION PROBLEMS SOLVED BY THE METHOD OF INTERSECTION OF FIGURES ACCORDING TO THEIR LEVEL OF COMPLEXITY
|
Tat'yana Vyacheslavovna Zakharova
Lesosibirsk Pedagogical Institute (Branch) of Siberian Federal University
Elena Viktorovna Kirgizova
Lesosibirsk Pedagogical Institute (Branch) of Siberian Federal University
Nailya Kuttusovna Ignat'eva
Lesosibirsk Pedagogical Institute (Branch) of Siberian Federal University
|
|
Submitted:
January 1, 2015
|
|
Abstract.
In the article the topicality of the classification of construction problems according to the levels of complexity is grounded and the main criteria for the distribution of constructive problems solved by the method of the intersection of figures are singled out. Problems are divided into groups, which correspond to four levels of expected results: minimum (solving problems of educational standard); general (solving problems, which are the combinations of the sub-problems of minimum level connected by explicit associative links); advanced (solving problems, which are the combinations of sub-problems connected by both explicit and implicit associative links); and research (as a result of solving problems new information is created).
|
Key words and phrases:
задача на построение
геометрическое место точек
метод пересечения фигур
дифференцированное обучение
классификация задач по уровню сложности
construction problem
geometrical locus
method of intersection of figures
differentiated training
classification of problems according to their level of complexity
|
|
Open
the whole article in PDF format. Free PDF-files viewer can be downloaded here.
|
|
References:
- Аргунов Б. И. Геометрические построения на плоскости. М.: Учпедгиз, 1955. 270 с.
- Браун И. Задачи на построение в средней школе // Математика в школе. 1936. № 4. С. 34-58.
- Олифер Г. М. О решении геометрических задач на построение // Математика в школе. 1952. № 2. С. 13-22.
- Шарыгин И. Ф. Стандарт по математике: 500 геометрических задач. М.: Просвещение, 2007. 205 с.
|