Pan-Art Pedagogy. Theory & Practice Philology. Theory & Practice Manuscript

Archive of Scientific Articles

ISSUE:    Philology. Theory & Practice. 2025. Volume 18. Issue 10
COLLECTION:    Theory of Language

All issues

License Agreement on scientific materials use.

Means of communicating human and AI-generated subjectivity in Telegram-discourse

Tatyana Leonidovna Kopus
Financial University under the Government of the Russian Federation, Moscow


Submitted: October 3, 2025
Abstract. The emergence of AI-generated texts in the media space raises the question of how they differ from those created by humans. Through the linguistic category of subjectivity, a human speaker imbues a text with a sense of personhood, which prompts to investigate how AI imitates this subjectivity. The purpose of this study is to identify a set of subjectivity markers that differentiate between human and AI-generated texts within the genre of a Telegram-post. The human and AI-generated posts are analyzed in Russian. The scientific novelty of the research lies in the categorization of subjectivity markers in texts generated by DeepSeek in Telegram discourse, which contributes to the theory of digital subjectivity. The article determines for the first time that AI-generated texts exhibit an inflated concentration of formal subjectivity markers (deixis, rhetorical devices, emotions) alongside a simultaneous deficit of markers associated with credibility (citation, verifiable data, narratives from personal experience). Furthermore, the study is the first to identify the specific strategy that DeepSeek employs to simulate subjectivity, which manifests in the excessive use of spatio-temporal references, directive constructions, and rhetorical questions to compensate for the absence of an original author’s stance.
Key words and phrases:
маркеры субъективности
сгенерированный телеграм-пост
коммуникативно-лингвистические характеристики телеграм-поста
дейксис в телеграм-канале
цифровая субъективность
markers of subjectivity
AI-generated Telegram post
communicative and linguistic features of Telegram posts
deixis in a Telegram channel
digital subjectivity
Reader Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
  1. Балли Ш. Общая лингвистика и вопросы французского языка. М.: Изд-во иностранной литературы, 1955.
  2. Бахтин М. М. Проблемы творчества Достоевского. Л.: Прибой, 1929.
  3. Бенвенист Э. Общая лингвистика. М.: Прогресс, 1974.
  4. Вольф Е. М. Субъективная модальность и семантика пропозиции // Проблемы логического анализа языка: сборник статей. М.: Институт языкознания Академии наук СССР, 1988.
  5. Галичкина Е. Н. Концептуализация искусственного интеллекта в российском медийном дискурсе // Вестник Волгоградского государственного университета. Серия 2: Языкознание. 2024. Т. 23. № 5.
  6. Колшанский Г. В. Соотношение субъективных и объективных факторов в языке. М.: Наука, 1975.
  7. Кушнерук С. Л. Телеграм-дискурс как формат цифровой коммуникации // Медиалингвистика. 2024. Т. 11. № 3.
  8. Лешкевич Т. Г. Проблема субъектности нейросетей: humans и non-humans // Философия науки и техники. 2024. Т. 29. № 2.
  9. Селиверстова О. Н. Местоимения в языке и речи / отв. ред. В. Н. Ярцева. М.: Наука, 1988.
  10. Тельпов Р. Е., Ларцина С. В. Типовые различия естественных и сгенерированных нейронной сетью текстов в квантитативном аспекте // Научный диалог. 2023. Т. 12. № 7.
  11. Шуйская Ю. В. Лингвистические особенности дискурса телеграм-каналов как нового типа медиа // Социальные и гуманитарные науки. Отечественная и зарубежная литература. Серия 6: Языкознание. 2023. № 3.
  12. Avramenko A. P., Nasonova A. A., Tarasov A. A., Ternovskiy V. V. The effects of generative artificial intelligence technologies on writing tasks in foreign language learning // Artificial Intelligence and Human-Computer Interaction. 2024. https://doi.org/10.3233/FAIA250110
  13. Conrad S., Biber D. Adverbial marking of stance in speech and writing // Evaluation in Text: Authorial Stance and the Construction of Discourse / ed. by S. Hunston and G. Thompson. N. Y.: Oxford University Press, 2001.
  14. Dawkins H., Fraser K., Kiritchenko S. When detection fails: the power of fine-tuned models to generate human-like social media text. 2025. https://doi.org/10.48550/arXiv.2506.09975
  15. González-Arias C., Chatzikoumi E., López-García X. The anthropomorphic pursuit of AI-generated journalistic texts: limits to expressing subjectivity // Frontiers in Communication. 2024. Vol. 9.
  16. Halliday M. A. K., Matthiessen C. M. I. M. An introduction to functional grammar. L.: Arnold, 2004.
  17. Kerbrat-Orecchioni C. L’Énonciation – De la subjectivité dans le langage. P.: Armand Colin, 1980.
  18. Lyons J. Deixis and Subjectivity: Loquor, Ergo Sum? // Speech, Place, and Action: Studies in Deixis and Related Topics / eds. R. J. Jarvella, W. Klein. Chichester: John Wiley, 1982.
  19. Macko D., Kopal J., Moro R., Srba I. MultiSocial: multilingual benchmark of machine-generated text detection of social-media texts. 2024. https://doi.org/10.48550/arXiv.2406.12549
  20. Maingueneau D. L’énonciation en linguistique française. P.: Hachette, 1994.
  21. Ng L. H. X., Carley K. M. A global comparison of social media bot and human characteristics // Scientific Reports. 2025. Vol. 15. Art. 10973. https://doi.org/10.1038/s41598-025-96372-1
  22. Radivojevic K., Clark N., Brenner P. LLMs Among Us: Generative AI Participating in Digital Discourse // Proceedings of the AAAI Symposium Series. 2024. Vol. 3.
  23. Sandler M., Choung H., Ross A., Prabu D. A linguistic comparison between human and ChatGPT-generated conversations // Pattern Recognition and Artificial Intelligence. ICPRAI 2024. Lecture Notes in Computer Science. 2024. Singapore: Springer, 2025. Vol. 14892. https://doi.org/10.1007/978-981-97-8702-9_25
  24. Steen G. Developing, testing and interpreting deliberate metaphor theory // Journal of Pragmatics. 2015. Vol. 90. https://doi.org/10.1016/j.pragma.2015.03.013
All issues


© 2006-2025 GRAMOTA Publishing