Pan-Art Pedagogy. Theory & Practice Philology. Theory & Practice Manuscript

Archive of Scientific Articles

ISSUE:    Almanac of Modern Science and Education. 2014. Issue 9
COLLECTION:    Physical-Mathematical Sciences

All issues

License Agreement on scientific materials use.

ON ISSUE OF SPHERE ROTATION IN RAREFIED GAS AT ARBITRARY KNUDSEN NUMBERS

Evgenii Gabrielevich MAYASOV
Lobachevsky State University of Nizhni Novgorod (Branch) in Arzamas


Submitted: August 20, 2014
Abstract. At arbitrary Knudsen numbers the moment of resistance force acting in rarefied gas on slowly rotating sphere was calculated. The analysis is conducted on the basis of the solution of linearized Boltzmann equation with exact collision integral by moment method for gas molecules interacting as hard spheres. Boundary condition on sphere surface is put in general terms. Comparison with results obtained previously by other methods was carried out.
Key words and phrases:
кинетическое уравнение
интеграл столкновений
переходный режим
число Кнудсена
функция распределения
моментный метод
момент силы сопротивления
интегральные скобки
kinetic equation
collision integral
transitional regime
Knudsen number
distribution function
moment method
resistance force moment
integral brackets
Reader Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
  1. Поддоскин А. Б., Юшканов А. А. Вращение сферы в неограниченном газе // Известия РАН. Механика жидкости и газа. 1997. № 1. С. 165-171.
  2. Смирнов Л. П., Чекалов В. В. Медленное вращение сферы в ограниченном обьёме разреженного газа // Известия АН СССР. Механика жидкости и газа. 1978. № 4. С. 117-124.
  3. Ферцигер Дж., Капер Г. Математическая теория процессов переноса в газах / пер. с англ. Д. Н. Зубарева и А. Г. Башкирова. М.: Мир, 1976. 554 с.
  4. Черчиньяни К. Теория и приложения уравнения Больцмана / пер. с англ. под ред. Р. Г. Баранцева. М.: Мир, 1978. 495 с.
  5. Cercignani C., Tironi G. Some Applications to the Transition Regime of a New Set of Boundary Conditions for Navier - Stokes Equations // Rarefied Gas Dynamics. N. Y.: Academic Press, 1969. Vol. 1. P. 281-290.
  6. Lees L. Kinetic Theory Description of Rarefied Gas Flow // Journal of Society of Industrial and Applied Mathematics. 1965. Vol. 13. № 1. P. 278-311.
  7. Loyalka S. K. Motion of a Sphere in a Gas: Numerical Solution of the Linearized Boltzmann Equation // Physics of Fluids. 1992. Vol. 4. № 5. P. 1049-1056.
All issues


© 2006-2025 GRAMOTA Publishing