GRAMOTA Publishers suggests publishing your scientific articles in periodicals
Pan-ArtPedagogy. Theory & PracticePhilology. Theory & PracticeManuscript

Archive of Scientific Articles

SOURCE:    Philology. Theory & Practice. Tambov: Gramota, 2024. № 3. P. 948-956.
SCIENTIFIC AREA:    Philological Sciences
Procedure of Scientific Articles Publication | To Show Issue Content | To Show All Articles in Section | Subject Index

License Agreement on scientific materials use.

Post-editing of English to Russian machine translation: Issues, methods, and optimization

Khromova Anna Andreevna, Lukmanova Renata Razifovna
Ufa University of Science and Technology

Submitted: 16.11.2023
Abstract. The aim of the study is to develop recommendations for optimizing English to Russian machine translation of scientific texts in the field of natural sciences during the post-editing stage, focusing on enhancing the quality of machine translation. The article provides a systematic categorization of post-editing methods for machine translation from English to Russian of texts in the field of natural sciences, specifically neurobiology, and conducts a multi-faceted analysis of the post-editing process of machine translation. This indicates the scientific novelty of the research. Successful post-editing examples are presented, discussing its prospects for improving machine translation systems. The results revealed that during post-editing, challenges arise as online services generate incorrect syntactic structures or introduce terminological units which meanings differ from those in the original language. An important task for the post-editor is to enhance the text's comprehension, which can be achieved, for instance, through sentence reconstruction.
Key words and phrases: машинный перевод, англо-русский перевод, постредактирование, лёгкое постредактирование, полное постредактирование, machine translation, English to Russian translation, post-editing, light post-editing, full post-editing
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
  1. Andreev N. D. Osnovnye napravleniya raboty eksperimental'noi laboratorii mashinnogo perevoda // Hutchins W. J. Machine Translation: Past, Present, Future. N. Y., 1986.
  2. Apresyan Yu. D. Lingvisticheskoe obespechenie sistemy frantsuzsko-russkogo avtomaticheskogo perevoda ETAP-1. IV. Frantsuzskii sintaksicheskii analiz // Predvaritel'nye publikatsii PGEPL. M.: Institut russkogo yazyka AN SSSR, 1983. Vyp. 159.
  3. Kibrik A. A. Model' avtomaticheskogo analiza pis'mennogo teksta (na materiale ogranichennogo voennogo pod"yazyka). M.: Izd-vo MGU, 1970.
  4. Kulagina O. S. Issledovaniya po mashinnomu perevodu. M.: Nauka, 1979.
  5. Leont'eva N. N. Baza znanii i avtomaticheskii perevod (proekt mnogoyazychnoi informatsionno-spravochnoi sistemy) // Tezisy dokladov mezhdunarodnogo seminara po mashinnomu perevodu «EVM I PEREVOD 89» (g. Tbilisi, 27 noyabrya – 2 dekabrya 1989 g.). M., 1989.
  6. Marchuk Yu. N. Problemy mashinnogo perevoda. M.: Nauka, 1983.
  7. Mashinnyi perevod i prikladnaya lingvistika. Problemy sozdaniya sistemy avtomaticheskogo perevoda / pod red. G. V. Chernova. M., 1986.
  8. Rozentsveig V. Yu. Osnovy obshchego i mashinnogo perevoda. M., 1964.
  9. Svetailov B. V. Lingvisticheskie i sotsiokul'turnye osobennosti khedzhirovaniya v nauchnom diskurse (na materiale tekstov angloyazychnykh nauchnykh statei ekonomicheskoi napravlennosti) // Filologicheskie nauki. Voprosy teorii i praktiki. 2022. T. 15. Vyp. 7.
  10. Utrobina A. A. Komp'yuternaya lingvistika i mashinnyi perevod: ob istorii stanovleniya // Vestnik Bashkirskogo universiteta. 2022. T. 27. № 2.
  11. Shalyapina Z. M. K probleme postroeniya formal'noi modeli protsessa perevoda // Teoriya perevoda i nauchnye osnovy podgotovki perevodchikov: mat. vsesoyuz. nauch. konf.: v 2-kh ch. M.: MGPIIYa im. M. Toreza, 1975. Ch. II.
  12. Cho K. Neural Machine Translation by Jointly Learning to Align and Translate // arXiv. 2016. Art. 1409.0473.
  13. Guerberof A. A. What Do Professional Translators Think about Post-Editing? // Journal of Specialised Translation. 2013. Iss. 19.
  14. Kenny D. Machine Translation for Everyone: Empowering Users in the Age of Artificial Intelligence (Translation and Multilingual Natural Language Processing 18). Berlin: Language Science Press, 2022.
  15. King A. Neurobiology: Rise of Resilience // Nature. 2016. Vol. 531.
  16. Koehn Ph. Neural Machine Translation // Machine Translation. 2021. Vol. 35.
  17. LeCun Y., Bengio Y., Hinton G. Y. Deep Learning // Nature. 2015. Vol. 521.
  18. Manning S. D. Human Language Understanding & Reasoning // Dædalus. 2022. Vol. 151 (2).
  19. Marie B., Fujita A., Rubino R. Scientific Credibility of Machine Translation Research: A Meta-Evaluation of 769 Papers // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, August 1-6. 2021.
  20. Wu Y., Schuster M., Chen Zh., Le Q. V., Norouzi M., Macherey W., Krikun M., Cao Y., Gao Q., Macherey K., Klingner J., Shah A., Johnson M., Liu X., Kaiser L., Gouws S., Kato Y., Kudo T., Kazawa H., Stevens K., Kurian G., Patil N., Wang W., Young C., Smith J., Riesa J., Rudnick A., Vinyals O., Corrado G., Hughes M., Dean J. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation // arXiv. 2016. Art. 1609.08144.

Procedure of Scientific Articles Publication | To Show Issue Content | To Show All Articles in Section | Subject Index

© 2006-2024 GRAMOTA Publishers

site development and search engine optimization (seo):